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Joseph Fourier

Fourier was 

obsessed with the 

physics of heat and 

developed the 

Fourier series and 

transform to model 

heat-flow problems.

Joseph Fourier 1768 - 1830



A Fourier series is an expansion of a periodic function

f (t) in terms of an infinite sum

of cosines and sines

Introduction
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In other words, any periodic function can be 

resolved as a summation of constant value 

and cosine and sine functions:
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The computation and study of Fourier

series is known as harmonic analysis and

is extremely useful as a way to break up

an arbitrary periodic function into a set of

simple terms that can be plugged in,

solved individually, and then recombined

to obtain the solution to the original

problem or an approximation to it to

whatever accuracy is desired or practical.
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Example 1

Determine the Fourier series representation of the 

following waveform.



Solution

First, determine the period & describe the one period 

of the function: 

T = 2
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Then, obtain the coefficients a0, an and bn: 
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y = f(t) over the interval [a,b], hence 
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Notice that n is integer which leads                  ,
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Comments

 The sum of the Fourier series terms can 

evolve (progress) into the original 

waveform

 From Example 1, we obtain

 ttttf 
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 It can be demonstrated that the sum will 

lead to the square wave:
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Example 2

Given
,)( ttf  11  t
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Sketch the graph of f (t) such that .33  t

Then compute the Fourier series expansion of f (t). 



Solution

The function is described by the following graph: 

T = 2
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Then we compute the coefficients:
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Symmetry Considerations

 Symmetry functions:

(i) even symmetry

(ii) odd symmetry



Even Symmetry

 Any function f (t) is even if its plot is 

symmetrical about the vertical axis, i.e.
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Even Symmetry 

 The examples of even functions are:
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Even Symmetry

 The integral of an even function from −A to 

+A is twice the integral from 0 to +A
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Odd Symmetry

 Any function f (t) is odd if its plot is 

antisymmetrical about the vertical axis, i.e.
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Odd Symmetry 

 The examples of odd functions are:

3)( ttf 

t t

t

ttf )(

ttf sin)( 



Odd Symmetry

 The integral of an odd function from −A to 

+A is zero

t 0)(odd 
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Symmetry consideration

From the properties of even and odd

functions, we can show that:

 for even periodic function;
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 for odd periodic function;
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Odd Function
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Example 3

Given
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Sketch the graph of f (t) such that .66  t

Then compute the Fourier series expansion of f (t). 



Solution

The function is described by the following graph: 

T = 4
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Then we compute the coefficients. Since f (t) is 

an odd function, then
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Finally,



Function defined over a finite interval

 Fourier series only support periodic 
functions

 In real application, many functions are 
non-periodic

 The non-periodic functions are often can 
be defined over finite intervals, e.g.

y = 1 y = 1

y = 2



 Therefore, any non-periodic function must be 

extended to a periodic function first, before 

computing its Fourier series representation

 Normally, we prefer symmetry (even or odd) 

periodic extension instead of normal periodic 

extension, since symmetry function will provide 

zero coefficient of either an or bn

 This can provide a simpler Fourier series 

expansion
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Half-range Fourier Series Expansion

 The Fourier series of the even or odd 

periodic extension of a non-periodic 

function is called as the half-range Fourier 

series

 This is due to the non-periodic function is 

considered as the half-range before it is 

extended as an even or an odd function 



 If the function is extended as an even

function, then the coefficient bn= 0, hence
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which only contains the cosine harmonics.

 Therefore, this approach is called as the 

half-range Fourier cosine series 



 If the function is extended as an odd

function, then the coefficient an= 0, hence
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which only contains the sine harmonics.

 Therefore, this approach is called as the 

half-range Fourier sine series



Example 4

 ttf 0,1)(

Compute the half-range Fourier sine series expansion

of f (t), where 



Solution

Since we want to seek the half-range sine series,

the function to is extended to be an odd function:

T = 2π
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