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Fourier was
obsessed with the
physics of heat and
developed the
Fourier series and
transform to model
heat-flow problems.

Joseph Fourier 1768 - 1830




A Fourier series Is an expansion of a
f (t) In terms of an infinite sum
of and



In other words, any can be
resolved as a summation of value
and and functions:



The computation and study of Fourier
series Is known as and
IS extremely useful as a way to
an arbitrary periodic function
that can be plugged In,
, and

Or an approximation to It to
whatever accuracy Is desired or practical.
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First, determine the period & describe the one period
of the function:




Then, obtain the coefficients a,, a, and b,:

Or, since IS the
y = f(t) over the interval [a,b], hence



Notice that n is integer which leads
since

Therefore,
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> The sum of the Fourier series terms can
evolve (progress) into the original
waveform

> From Example 1, we obtain

> It can be demonstrated that the sum will
lead to the square wave:









square wave sawtooth wave

semicircle




Given

Sketch the graph of f (t) such that

Then compute the Fourier series expansion of f ().



The function is described by the following graph:

We find that



Then we compute the coefficients:
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> Symmetry functions:
(1) symmetry
(1) symmetry



> Any function f (t) IS If Its plot IS
symmetrical about the vertical axis, I.e.



> The examples of functions are:
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—A to

from

function
+A IS twice the integral from 0 to +A

> The integral of an




> Any function f (t) IS If Its plot Is
antisymmetrical about the vertical axis, I.e.



> The examples of functions are:




function from —A to

> The integral of an
+A IS Zero
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From the properties of and
functions, we can show that:

> for periodic function;

> for periodic function;
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-1, -2<t<-1
CE\V f ()=t , -1<t<l

1 | l<t<?2
f(t+4)=f(t)

Sketch the graph of f (t) such that

Then compute the Fourier series expansion of f ().



Solution

The function is described by the following graph:
f (1)
A

We find that



Then we compute the coefficients. Since f (t) Is
an odd function, then

and
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> Fourler series only support periodic
functions

> In real application, many functions are
non-periodic

> The non-periodic functions are often can
be defined over finite intervals, e.g.
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> Therefore, any non-periodic function must be
first, before
computing its Fourier series representation

> Normally, we prefer symmetry (even or odd)
periodic extension instead of normal periodic
extension, since symmetry function will provide
zero coefficient of either a, or b,

> This can provide a simpler Fourier series
expansion



Periodic extension

Non-periodic A

function

A

> Even periodic extension

Odd periodic extension




> The Fourier series of the even or odd
periodic extension of a non-periodic
function Is called as the

> This Is due to the non-periodic function IS
considered as the half-range before it is
extended as an even or an odd function



> If the function Is extended as an
function, then the coefficient b= 0, hence

which only contains the cosine harmonics.
> Therefore, this approach Is called as the



> If the function Is extended as an
function, then the coefficient a = 0, hence

which only contains the sine harmonics.
> Therefore, this approach Is called as the



Compute the half-range Fourier sine series expansion
of f (t), where



Since we want to seek the half-range sine series,
the function to is extended to be an odd function:
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Hence, the coefficients are

and

Therefore,






